SELECTED ENGINEERING PROBLEMS NUMBER 3

INSTITUTE OF ENGINEERING PROCESSES AUTOMATION AND INTEGRATED MANUFACTURING SYSTEMS

Mateusz CIELNIAK

Institute of Engineering Process Automation and Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland *mateusz.cielniak@polsl.pl

THE AUTOMATION OF MANUFACRURING COSTS ESTIMATION PROCESS

Abstract: The main aim of the research was to automate the process of manufacturing costs estimation. The repetitive stages were distinguished and the main algorithm was distinguished. Based on that algorithm the spreadsheet and computer program were developed. Finally the results were compared and conclusions presented.

1. Introduction

The product price is one of the key criteria while customer makes product search. For this reason, the manufacturer of a new technical mean must offer a product at a competitive price to meet customer requirements. Therefore the manufacturing costs estimation is extremely important stage in the constructional – designing process. Studies show that the decisions made at this stage are the key to the product cost [2, 4]. For this reason it is important to develop tools to support the process of costs estimation.

2. Algorithm

The main goal of the research was to calculate the costs of manufacturing. The costs definitions and calculation models are described in [1, 3].

Estimating the cost of production has a high repeatability of operations. The same process of calculation must be performed for each element of each size. In the case of hydraulic prop series of types, this means estimating the cost of five sizes of 11 elements so it gives a total of 55 elements. It follows that the process of manufacturing cost estimation can be automated.

The computer program was developed to improve the series of types manufacturing costs estimation process.

3. Excel spreadsheet

Most of calculations needed to estimate the cost of manufacturing has been carried out in an Excel spreadsheet. Initially, there was defined a simple array of data and relationships. During the research process the spreadsheet template was developed. Now it is possible to quickly and easily obtain the result. The spreadsheet is characterized by a specific structure. Each of step of calculation was saved in separate sheet.

The first one summarizes the design attributes. The operators used to calculate the values are marked with different colours:

- Yellow PK values determined under the terms of the constructional similarity,
- Red OG values determined by geometric operators,
- Blue EK the dimensions of the catalogue elements,
- Bronze RS values dependent on the relationship joins,
- Orange OT values based on technological process operators.

Fig.1. Excel spreadsheet – constructional attributes

The big advantage is the ability to define the relationship between the dimensions so user can easily determine their value and the modification are immediately taken into account.

Next sheet contains rules that, based on processing times obtained from the CAM simulation and: material prices, the rate of the worker, etc. allows to calculate the manufacturing costs of individual elements and finally of the entire series of types. With the ability to copy the cells user can freely add or delete process steps assigned to the element or add/delete elements.

A	В	С	D	E	F	G	Н		J	K	L	M	N	0	Ρ	Q
ement	Operacja							250		315		400		500		63
				_												
irt1	Ogółem	Cena 1kg materiału wejściowego	2,5	z∛kg		Koszt całko	owity	2288,77		4785,76		9259,46		17707,78		35594,3
		Cena matrycy odkuwki	0	Zł				-								
		Cena 1kg odpadów w skupie	0,3	z∛kg		Masy	M.wej	61,17 kg	1	138,63		277,67		543,48		1106,0
		Narzuty materiałowe	0,25				M.wyj	53,55 kg		114,70		231,16		455,84		918,9
							M.odpadu	7,62 kg	()	23,93		46,51		87,64		187,0
		Inne														
		Wielkość produkcji	10	szt.		K.mater.	KM	1888,70	3,65	4260,40	3,12	8537,66	3,01	16720,83	3,18	34002,8
	Toczenie	Parametry główne														
		Stawka godzinowa robotnika	20	zł∕h		Czasy	tj	5,50		12,38		23,61		38,92		81,1
		Wskaźnik socjalny	1,05				tg	4,46 mi	in	10,29		19,81		32,78		68,6
		Koszt energii	0,3	z∛kWh			tp	0,20 mi	in	0,20		0,20		0,20		0,2
		Wskaźnik uwzględniający inne koszty	1,8				tpz	25,00		25,00		25,00		25,00		25,0
		Czas przygotowawczo – zakończeniowy	25	min			T pracy narz	4,46		10,29		19,81		32,78		68,6
		Fundusz czasu pracy	2100	h/rok												
		Procent amortyzacji rocznie	12,5	%		K rob.bezp	Kr	27,57 zł		51,65		90,96		144,54		292,4
		Współczynnik uszkodzenia narzędzia	1,2													
		Wskażnik normatywu czasu uzupełniającego	0,18			Koszt amort	yzacji	11,06		25,52		49,12		81,30		170,1
	-					+	-									
		Obrabiarka				Koszt energ	1	4,99		11,52		22,18		36,71		76,8
		Cena katalogowa	250000	Zł		=										
		Moc silnika obrabiarki	22,4	KW		K obr.na ma	Kobr	28,89		66,67		128,35		212,42		444,5
		Nerzedzia				Koostypers	Ka	10 27		22.76		60 00		02.14		107.0
			20	min		RUSZLY Harz	NII	10,37		33,70		50,09		55,14		107,0
		czas zuzycia narzęuzia	30					74.00		450.00		070.00		450.40		004.0
		Cena narzędzia	6,6	21		Koszt obro	DKI	74,63	3,18	152,06	2,71	276,20	2,16	450,10	3,23	924,6
	Francis	Desemates aléssa a														
	Frezowanie	Stawka and zing wa sebataika	20	71/b		Canon	41	10.16		11.02		14.52		12.04		22.0
		Stawka godzinowa robotnika	20	2911		Czasy	y	0.44		0.00	-	14,32		15,04		40.0
		wskaznik socjalny	1,05				tg	0,41 m	n	9,90		12,11		15,09		19,2
		Noszi energii	0,3	ZWKWWII			tp to a	0,20 11	11	0,20		25.00		25.00		25.0
		Cran przypotowowozo zakończeniowy	26	min			T procy parz	23,00		23,00		12,00		15.00		10.2
		Eunduez czasu pracy	2100	h/rok			r pracy narz	0,41		3,50		12,11		15,05		15,2
		Procent amorturacii rocznia	12.5	9/		K rob bezo	Kr	43.01		50.04		50 17		71.49		88.6
		Wsnółczynnik uszkodzenia narzedzia	12,5	/0		K100.062p	N.	43,31		50,04		55,17		11,45		00,0
		Wskaźnik normatywu czasu uzupełniajacego	0.18			Koszt amort	vzacii	91.81		108.02		132.13		164.69		210.1
			0,10			+	Luch	01,01		100,02		102,10		101,00		
		Obrabiarka				Koszt energ	I	9.42		11.09		13.56		16.90		21.5
		Cena katalogowa	1100000	zł		-										
		Moc silnika obrabiarki	22,4	kW		K obr.na ma	Kobr	182,22		214,39		262,25		326,87		417,0
		Narzędzia				Koszty narz	Kn	28,81		32,73		38,57		46,44		57,4
		Czas zużycia narzędzia	30	min												
		Cena narzędzia	6,6	zł		Koszt obró	bki	254,94	0,69	297,16	0,86	359,99	0,95	444,80	1,06	563,1
	Wiercenie	Parametry główne														
		Stawka godzinowa robotnika	20	zł∕h		Czasy	tj	2,50		2,74		3,05		3,40		3,8
		Wskaźnik socjalny	1,05				tg	1,92 mi	n	2,12		2,39		2,68		3,0
		Koszt energii	0,3	z₩kWh			tp	0,20 mi	a	0,20		0,20		0,20		0,2
		Wskaźnik uwzględniający inne koszty	1,8				tpz	25,00		25,00		25,00		25,00		25,0
		Czas przygotowawczo – zakończeniowy	25	min			T pracy narz	1,92		2,12		2,39		2,68		3,0
		Fundusz czasu pracy	2100	h/rok												
	1 1 1		100			Trove / 11	10			13.00		40.00				~ ~ ~

Fig.2. Excel spreadsheet – CAM method

In the next spreadsheet the tables and relations were defined which allows to calculate costs witch similarity use.

	A	В	С	D	E	F
2						
	Dort1	Koszty wzrastające	Koszty wzrastające	Koszty wzrastające		
3	Fatti	z	Z	Z		
	Nr operacij	φ_1^3	φ_1^2	φ_1^1	Koszty	Operacie
4	Ni operacji	-	-		stałe	Operacje
5	1.	8537,66	-	-		Koszty materiałowe
6	2.	359,99	-	-	-	Frezowanie
7	3.	-	278,20	-	-	Toczenie
8	4.	-	-	83,61	-	Wiercenie
9		8897,64	278,20	83,61	0,00	9259,46
10	1,25	0,96	0,03	0,01	0,00	
11						
12	1	-2	0,27	2499,93		
13	2	-1	0,52	4800,53		
14	3	0	1,00	9259,46		
15	4	1	1,94	17917,41		
16	5	2	3,75	34751,66		
17						
	0	Koszty wzrastające	Koszty wzrastające	Koszty wzrastające		
18	Partz	Z	Z	z		
		0 ³	ω^2	o_{1}^{1}	Koszty	a
19	Nr operacji	<i>'</i> 1	71	r 1	stałe	Operacje
20	1.	309,85	-	-	-	Koszty materiałowe
21	2.		92,59		-	Toczenie
22		309,85	92,59	0,00	0,00	402,44
23	1,25	0,77	0,23	0,00	0,00	
24						
25	1	-2	0,30	119,15		
26	2	-1	0,54	217,90		
27	3	0	1,00	402,44		
28	4	1	1,86	749,85		
29	5	2	3,50	1408,04		
0.0						

Fig.3. Excel spreadsheet – similarity method

Based on mass values taken from sheet shown on fig. 2 the cost are calculated with simplified method use.

	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
2														
3	Masy													
4	L.p.	i	Part1	Part2	Part3	Part4	Part5	Part6	Part7	Part8	Part9	Part10	Part11	Suma mas
5	1	-2	53,55	2,32	16,95	32,91	20,97	71,77	63,38	46,21	14,61	0,81	25,75	349,23
6	2	-1	114,70	4,63	34,71	65,29	39,44	142,60	124,65	88,62	28,86	1,58	45,22	690,30
7	3	0	231,16	9,40	75,75	122,02	81,81	305,40	244,05	206,88	65,32	3,16	84,41	1429,36
8	4	1	455,84	18,30	160,54	246,50	160,95	564,70	447,93	417,15	125,63	6,29	140,54	2744,37
9	5	2	918,98	36,29	346,27	453,17	320,43	1145,82	906,64	802,52	243,33	12,55	236,34	5422,34
10														
11	Stosunki n	nas												
12	1	-2	0,23	0,25	0,22	0,27	0,26	0,24	0,26	0,22	0,22	0,26	0,31	0,24
13	2	-1	0,50	0,49	0,46	0,54	0,48	0,47	0,51	0,43	0,44	0,50	0,54	0,48
14	3	0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
15	4	1	1,97	1,95	2,12	2,02	1,97	1,85	1,84	2,02	1,92	1,99	1,66	1,92
16	5	2	3,98	3,86	4,57	3,71	3,92	3,75	3,71	3,88	3,73	3,97	2,80	3,79
17														
18	Koszty													
19	1	-2	2145,02	99,33	1062,66	1654,14	932,87	2923,90	3592,33	2223,80	669,52	259,91	1159,82	16723,31
20	2	-1	4594,48	198,22	2176,10	3281,63	1754,53	5809,51	7065,07	4264,73	1322,54	506,99	2036,79	33010,60
21	3	0	9259,46	402,44	4749,06	6133,02	3639,41	12441,97	13832,58	9955,85	2993,35	1013,98	3801,97	68223,09
22	4	1	18259,35	783,48	10064,87	12389,69	7160,03	23005,83	25388,35	20074,84	5757,12	2018,33	6330,17	131232,05
23	5	2	36811,10	1553,68	21709,00	22777,43	14254,67	46680,61	51387,69	38620,31	11150,83	4027,04	10645,17	259617,54

Fig.4. Excel spreadsheet – simplified method

The last book summarizes the results of all the methods presented in tabular form and on the graph.

Fig.5. Excel spreadsheet – summary

Thanks to excel functionality this tool has a high versatility and flexibility.

4. Computer program

The computer program was developed. It is able to aid process of the manufacturing costs calculation. After entering the necessary data, such as the type of blank, the weight of the input and output element, the price of material and waste, the rate of the employee, etc. based on a defined manufacturing process (manufacturing – *Obróbka* tab – fig. 6) the program estimate the cost with the similarity method use, then with method based on data gathered from the CAM simulation and finally with a simplified one.

Elementy	Narzedzia	Obrabiarki	Pozostałe	Obrobka	
Operac Nazwa Maszyr Czas pi Czas pi Zabieg Nazwa Narzed Czas g	ia rzygot - zak omocniczy lzie	25 0.2	Do	▼ ▼ daj	Typowielkosc01 Toczenie Planowanie czoła Toczenie zgrubne Toczenie zgrubne Toczenie zgrubne Toczenie dokładne Planowanie czoła Toczenie i wytaczanie rowków pod pierściel Toczenie i wytaczanie rowków wpustowych Typowielkosc02 Toczenie Planowanie czoła Toczenie zgrubne Toczenie dokładne Planowanie czoła Toczenie dokładne Władche William (Mache)

Fig.6. Program – manufacturing (Obróbka) tab

Result of the calculation is presented in a report and on the graph (fig. 7).

Fig.7. Result of program calculation

The results obtained by excel spreadsheet and computer program were compared. Biggest difference between that results is equal to 2,2%. The computer program and excel use different number precision. Because of that, after several mathematical operations, this small divergence increases. But still 2% difference is negligibly small.

It is possible to estimate the cost of production of an item made from various semifinished products. In this case, in the elements tab, user should enter the same element several times with various blanks. By adding the same item several times, for which the user defines the various manufacturing processes (*Obróbka* tab) it is possible to compare the manufacturing costs of element made of different processes.

5. Conclusion

The main advantage of a spreadsheet is the fact that the results are immediately updated if a single value will be modified. In this way user can observe the results of changes and then he is able to modify the construction to minimize the costs. The spreadsheet has a high versatility and flexibility. The user can delete or modify the formula or add his own.

Sometimes, however, the possibility of any edition is undesirable and because of that the computer program was developed. This program offers a similar functionality as described sheet. This program is characterized by high versatility. It may help minimize the manufacturing costs.

Acknowledgement

This work was supported by Polish Ministry of Science and Higher Education - National Science Centre as a part of the research project No. 6786/T02/2011/40.

References

- 1. M. Cielniak: Relatywne koszty zabiegów z zastosowaniem liczb podobieństwa konstrukcyjnego, Systems: Journal of transdisciplinary systems science, Volume 16, Issue 1, s. 141-149, (In Polish).
- 2. Dietrych J.: Podstawy konstrukcji maszyn. WNT, Warszawa 1995, (In Polish).
- 3. Feld M.: Projektowanie i automatyzacja procesów technologicznych typowych części maszyn. Wydawnictwo Naukowo-Techniczne, Warszawa 1994, (In Polish).
- 4. Pahl G., Beitz W.: Nauka konstruowania. WNT, Warszawa 1984, (In Polish).