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Abstract: The new approach to identification of linear-b#lar time-series models has been
recently proposed. It is based on separated ideatidn of linear and bilinear parts of the
model and exploits the advantages of Memetic Atgors Therefore, simple survey tests
have been performed for different sets of timeeserand some difficulties have been
recognized. The results of the tests and possijdaeations of problem are presented on
following pages.

1. Introduction

The identification of time-series models and analyd their properties is still dominated
by linear models. They are very useful for predictianalysis and classification and they are
also easy to identify. Therefore, up to now the lim@ar modelling of time-series is
significantly less explored and definitely more lidraging. The first research in this area was
performed by Granger and Andersen [1]. They hase #le pioneers in theory of bilinear
time-series models [2] which, are the subject @$ flaper and also are one of the simplest
variants of nonlinear time-series models.

The bilinear time-series models were next concetne&ubba Rao [3] and Quinn. Leter,
the Method of Lest Squares for estimation of diajamriant of bilinear time-series model
was proposed by Pham and Guegan. Moreover, Goa@jgeHeuts [6] performed a statistical
analysis of higher order moments of certain biling@odels which was a foundation of
Method of Moments [11]. The stability condition faertain bilinear models has been
proposed by Lee and Mathews [7]. Close to this tiBielinska and Nabagto proposed a
modification to a Least Squares (LS) method [8]jolvhintroduced the concept of limiting
estimates of prediction error in identificationrafnlinear time-series.

A general bilinear time-series model (BARMA) is yaromplex and proper identification
of its coefficients is troublesome task. Thereforany authors consider simplified variants,
like the elementary linear-bilinear time series woLEB). This model still requires many
uncommon approaches in order to obtain unbiasadhasts during identification of its
coefficients.

Some analysis of identification difficulties hasebepresented by Brunner and Hess [9].
They surveyed the cost function of maximum likebdalgorithm and uncovered its complex
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and multimodal shape. The solution to this prob¥eas proposed inter alia by Madki, who
used a evolutionary algorithm [12] to overcame pih@blem of multimodality of the Mean
Square Error (MSE) cost function and proposed tbequure of estimating coefficients of all
stable elementary bilinear time-series [13,15].

Basing on those accomplishments and concept ofraegaidentification, proposed by
Wang [10], the adaptive Memetic Algorithm has beesigned [17]. In paper, survey tests,
with use of multiple generated time-series, arsgméed. Their purpose is to check efficiency
of the algorithm and point out possible problems.

2. Theoretical background
The BARMA(JA,dC,dK,dL) model [13] is defined below:

v = ayt-i)+3cet- )+
i=1 j=0 (1)

dK dL

+2. 2 Beet=K)y(t-1)

k=1 =1

where:y(t) is a discrete output signdljs a discrete time indicator, coefficiergisandc
determine linear part of the model ag] are coefiits of the bilinear part. Parametdss
dC, dK anddL describe the structure of the model and innovadignale(t) is assumed to be
independent, identically distributed white noise.

The above model is to complex for analysis andettage also numerous problems to be
found in attempts of identification of it. Thereégrsimplified structures [4,8-12] are typically
considered. Further, the elementary linear-bilingaB(m,k,|) model, defined in (2), will be
taken under the consideration.

y(t) = e(t) +ay(i —m) + Se(t k) y(t 1) 2)
Assuming following statistical properties of thaavation signa&(t):

E{e()} =0, E{e(t)’} =A%

3
E{e(te(t-1)} =0; E{e(t)’} =0, ©

The stability condition of bilinear part of the LEBk,|) model can be defined [11]:
B <1 (4)

where:4? is a variance of the white noisg).
The stability of the linear part of the LEBK,]) model is [14]:

la <1 ()
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The linear part of the LERgk,]) model can be identified with commonly used Reiwers
Least Squares (RLS) algorithm. However, accordm@l] and [12] identification of the
bilinear part requires more advanced approach ¢apafbperforming the optimization in
multimodal solution space. This can be solved usigptive Memetic Algorithm which was
recently proposed in [17]. This solution alreadgrads the second major problem of bilinear
part identification which is model indivertibiligddressed in details in [13].

3. Identification algorithm

As it has been mentioned in previous section, thecerned identification algorithm is
described in [17], thus only its general principdes adducted here and the main focus of the
paper will is dedicated to performance survey, gmésd in next section.

The identification algorithm is implemented accogito idea presented in Figure 1.

Initial Estimation of
linear part (RLS) : Re-evaluation of
1 SMSE saturation level ||

Generation of
initial Population

Revolution Estimation of
linear part (RLS)

pre-loop

main loop

Leader selection

. Mutation
/Stagnation control

Evaluation Selection of
/Local Search New Population

End
Fig.1l. The Menetic Al gorithm design

The cost function used in this optimization aldumt is Saturated Mean Square Error
function [13] defined by equation (7) with suppoft8) and (9):

dwy. Bk =3 ) @)

£(t) = y(t) - dy(t —m) - Bat - K) y(t—1) 8)
w  for Et)sw

et)=<&(t) for —-w<egt)<w 9)

-w for gt)<-w
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A similar saturation function (9) is also appliedridg computation of prediction error in
commonly known RLS algorithm [14] used in estimataf linear part of LEBf,k,I) model.

4. Survey results

The survey test have been prepared as follows:

The set of testing values have been selected t8 be{0.2, 0.5, 0.8} for both model
coefficients.

R = 10 realizations of time-series generated usiBB(lL,1,1) model have been obtained for
each possible combination of coefficients valuesifisetS The variance of the white noise
used as innovation signal was unary an each plartitine-series consisted df = 1000
samples. This way a set T of 90 testing time-sér@asbeen obtained.

For each time-series from the set T the identificeprocedure using proposed algorithm
[17] has been performed. Algorithm parameters wals® set accordingly [17]. The
Structure of the model has been assumed to be known

The identification results: estimates of model fioeits (&, ,[;’ ), estimate of innovation
signal (/i2 ), number of iterationg)(of the algorithm and final evaluation of saturatievel
(w), have been obtained and are presented in Talfles 1

The mean value, standard deviation and median safltsefor each set of R time-series
realizations with the same coefficient values haeen computed and also presented in

corresponding tables. Statistics for number ofattens () have been rounded up to
maintain their natural meaning and their real valaie presented in brackets.

Some interesting results have been highlightedi(fmwit).

Tab. 1. Resultsfor low values of both coefficients

Parameters o B 2 n w
Original values 0,2000 0,2000 1,0000 - 3,0000
1 0,2168 0,1842 1,0011 20 3,0017
2 0,1657 0,2050 0,9432 11 2,6843
3 0,1875 0,2118 0,9862 12 2,9462
4 0,2278 0,2271 1,0084 27 3,0126
5 0,1491 0,2308 0,9818 11 2,9398
6 0,1584 0,1975 0,9257 22 2,8863
7 0,2577 0,2522 0,9751 10 2,7814
8 0,1724 0,2152 0,9514 11 2,8705
9 0,2550 0,2114 0,9900 19 2,9742
10 0,2045 0,1884 0,8878 39 2,8267
Mean value 0,1995 0,2124 0,9651 18 (18,20) 2,8924
Std. Deviation 0,0392 0,0205 0,0377 9 (9,37) 0,1047
Median 0,1960 0,2116 0,9784 16 ( 15,50) 2,9131




ON DIFFICULTIES IN IDENTIFICATION OF SIMPLE LINEAR-BILINEAR...

Tab.2. Results for medium value of « and low value of

Parameters o B 2 n w
Original values 0,5000 0,2000 1,0000 - 3,0000
1 0,5332 0,1989 0,9773 33 2,9657
2 0,5163 0,2124 0,9315 8 2,8311
3 0,4796 0,1724 0,9044 17 2,8415
4 0,5272 0,2136 0,9842 25 2,9760
5 0,4772 0,1886 0,9245 15 2,7856
6 0,4923 0,2207 0,9911 15 2,9749
7 0,5047 0,2377 0,9319 18 2,8968
8 0,4962 0,2001 0,9257 13 2,8866
9 0,5533 0,1829 0,9957 13 2,9936
10 0,4635 0,2047 0,9718 7 2,8090
Mean value 0,5044 0,2032 0,9538 16 (16,40) 2,8961
Std. Deviation 0,0281 0,0191 0,0334 8 (7,73) 0,0775
Median 0,5005 0,2024 0,9519 15 ( 15,00) 2,8917

Tab.3. Resultsfor high value of « and low value of

Parameters P B 2 n w
Original values 0,8000 0,2000 1,0000 nd 3,0000
1 0,7969 0,2004 0,9637 13 2,9745
2 0,8068 0,2149 0,9722 11 2,9569
3 0,7828 0,1893 0,9865 7 3,0064
4 0,7875 0,2173 0,9746 7 3,0003
5 0,8064 0,2371 0,9199 30 2,8770
6 0,7763 0,2115 0,9426 9 2,9520
7 0,7667 0,1772 0,9644 9 2,9646
8 0,7650 0,2036 1,0113 15 3,0169
9 0,8223 0,1843 0,9414 15 2,9114
10 0,8392 0,1942 0,9768 19 2,9649
Mean value 0,7950 0,2030 0,9653 14 (13,50) 2,9625
Std. Deviation 0,0241 0,0179 0,0258 7 (6,98) 0,0429
Median 0,7922 0,2020 0,9683 12 (12,00) 2,9648

Tab. 4. Results for low value of a and medium value of S

Parameters o B 2 n w
Original values 0,2000 0,5000 1,0000 - 3,0000
1 0,2159 0,5219 0,9812 13 2,9836
2 0,1806 0,4889 0,9821 21 2,9725
3 0,1958 0,5203 0,9685 11 2,9458
4 0,1917 0,4956 1,0246 11 3,0360
5 0,1915 0,5104 1,0126 16 2,9814
6 0,2657 0,4838 0,9540 7 2,9022
7 0,2322 0,5141 1,0182 20 3,0340
8 0,1905 0,5287 0,9574 17 2,9358
9 0,2439 0,5184 0,9559 14 2,9352
10 0,1039 0,5200 0,9765 20 2,9627
Mean value 0,2012 0,5102 0,9831 15 (15,00) 2,9689
Std. Deviation 0,0439 0,0154 0,0265 5 (4,62) 0,0427
Median 0,1937 0,5163 0,9789 15 (15,00) 2,9676
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Tab. 5. Results for medium value of both coefficients

Parameters o B 2 n w
Original values 0,5000 0,5000 1,0000 - 3,0000
1 0,5221 0,5084 1,0030 13 3,0224
2 0,5617 0,4460 0,9912 21 2,9865
3 0,4112 0,5381 1,0108 24 3,0623
4 0,5224 0,4899 0,9916 20 2,9849
5 0,5474 0,4420 1,0181 9 3,0904
6 0,4920 0,5138 1,0103 12 3,0037
7 0,5478 0,4892 0,9670 17 2,9740
8 0,4990 0,5118 0,9532 18 2,9257
9 0,5547 0,4841 1,0137 18 3,0126
10 0,4738 0,5076 0,9505 16 2,9281
Mean value 0,5132 0,4931 0,9909 17 (16,80) 2,9991
Std. Deviation 0,0462 0,0302 0,0254 4 (4,49) 0,0522
Median 0,5223 0,4988 0,9973 18 (17,50) 2,9951

Tab. 6. Results for high value of « and medium value of f

Parameters P B 2 n w
Original values 0,8000 0,5000 1,0000 - 3,0000
1 0,7815 0,4995 1,0993 28 3,1577
2 0,7555 0,1386 1,6849 16 3,9233
3 0,7029 0,4946 1,2022 16 3,1997
4 0,7045 0,5167 1,1113 24 3,0774
5 0,9557 0,3523 1,1631 59 3,2448
6 0,8569 0,2840 1,4102 28 3,6373
7 0,8976 0,2735 1,3364 31 3,4697
8 0,8181 0,3361 1,2065 14 3,2920
9 0,8202 0,4928 0,0627 20 3,1549
10 0,8102 0,4882 1,0105 52 3,0371
Mean value 0,8103 0,3876 1,1287 29 (28,80) 3,3194
Std. Deviation 0,0800 0,1297 0,4211 15 (15,29) 0,2790
Median 0,8142 0,4203 1,1827 26 (26,00) 3,2223

Tab. 7. Results for low value of o and high value of

Parameters P B 2 n w
Original values 0,2000 0,8000 1,0000 - 3,0000
1 0,1336 0,3384 1,7164 90 3,9168
2 0,2396 0,2967 1,7037 19 3,9340
3 0,1799 0,7988 1,2212 46 3,1990
4 0,0218 0,1916 2,2814 200 4,3456
5 0,3374 0,3181 1,8263 19 4,0836
6 0,3059 0,1403 2,0728 16 4,3375
7 0,3029 0,2707 1,9990 32 4,2586
8 -1,7686 -0,4529 4,3948 200 5,4018
9 -0,0670 0,0055 2,2536 15 4,5054
10 0,2289 0,3422 1,8807 7 4,2832
Mean value -0,0086 0,2249 2,1350 64 (64,40) 4,2266
Std. Deviation 0,6317 0,3141 0,8512 75 (75,29) 0,5525

Median 0,2044 0,2837 1,9399 26 (25,50) 4,2709
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Tab. 8. Results for medium value of o and high value of

Parameters o B 2 n w
Original values 0,5000 0,8000 1,0000 - 3,0000
1 0,5193 0,1969 2,1879 172 4,4333
2 0,3837 0,2846 1,8038 47 4,0280
3 0,4789 0,2950 1,9823 35 4,2261
4 0,5763 0,0749 2,2105 29 4,4621
5 0,5657 0,2010 0,2118 27 4,3839
6 0,1337 0,1742 1,8786 200 4,1489
7 0,6255 0,2747 2,0107 20 4,2849
8 0,5033 0,0921 2,3422 11 4,6325
9 0,5640 0,1809 2,0715 20 4,3158
10 0,3907 0,3014 1,6956 33 3,9410
Mean value 0,4741 0,2076 1,8395 59 (59,40) 4,2857
Std. Deviation 0,1429 0,0815 0,6044 68 (67,75) 0,2085
Median 0,5113 0,1990 1,9965 31 (31,00) 4,3004

Tab. 9. Results for high values of both coefficients

Parameters a B 2° n w
Original values 0,8000 0,8000 1,0000 - 3,0000
1 0,9020 0,1390 2,4499 200 4,8448
2 0,9281 0,1162 2,8293 24 5,2102
3 0,8821 0,1148 2,2791 39 4,9582
4 0,7012 0,1983 2,9549 22 5,6182
5 1,6128 0,0900 4,5597 21 6,6345
6 0,7156 -0,0836 3,9696 47 5,9712
7 0,8651 0,0670 2,6967 22 5,0878
8 0,7644 0,0974 2,8456 13 5,3191
9 0,6093 -0,2150 2,8400 27 5,1305
10 0,7457 0,0235 4,5193 15 6,6941
Mean value 0,8726 0,0548 3,1944 43 (43,00) 5,5469
Std. Deviation 0,2795 0,1207 0,8365 56 (56,12) 0,6727
Median 0,8148 0,0937 2,8428 23 (23,00) 5,2647

The remarks can be summarised by the following:

» The estimates of coefficients obtained from id&dtion of models for time-series with low
original values of are sufficiently accurate (see Tables 1-3). Iis¢hal cases the saturation
level has been evaluated properly.

» The estimates of coefficients obtained for timeesewith medium original values gfare
mostly satisfactory (see Tables 4-6). The clearfgdx results occurred in Table 6 only.
They refer to time-series with high original vahfex coefficient.

* Only one identification result for time-series ob&d from LEB(1,1,1) model with high
original values of coefficient can be considered as satisfactoryitalinas been obtained for
case with low original value of coefficient (see Tables 7-9).

* The final remark is that all incorrect identificati results has a common feature. In all this
cases the saturation level for SMSE function haaen evaluated correctly. This way the
proper placement of the global minimum of the sotuspace of identification task cannot
be achieved.
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5. Possible sources of problem

As it was shown in previous section some of thailtesobtained, especially for high
coefficients values are biased. The direct causthiefproblem seems to be an incorrectly
evaluated saturation level during identificatioet’s exam the one of the incorrectly identified
models (first case from Table 7) in details:

» The history of changes of coefficienis« top, —bottom) values are presented in Figure 2.
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Fig.2. The Hi story of changes of coefficient val ues

» Additionally the history of changes for estimatevafiance of innovation signal (Min. of

SMSE) and saturation level evaluation is presemté&igure 3.

Min. of SMSE

Iteration
Saturation level

0 10 20 30 40 50 60 70 80 90
Iteration

Fig.3. The Hi story of changes of support identification results

What can be concluded from figures above is thara@on level has a critical influence on

identification results. However, it is not that i that saturation level closer to desired
value give better result. This particular case shthat sometimes larger value of saturation
level can provide us with better coefficient estiesa(iterations #15 - #25). Also change in
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estimates of coefficient values, even in a corgietction, not necessarily improve the
saturation level evaluation.

» To support the thesis that incorrect saturatioellessreason of the considered issue, another
run of algorithm has been performed. This time rsdéian level was forced to be correct
(w= 31 as proposed in [13,16,17]) The results are predantFigure 4.

Autoregresive Coefficient no. 1
0.2 T T T T T T T T T

Value

-0.05 1 | | | 1 1 1 I |
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Iteration

Bilinear Coefficient no. 1

0.2 1 1 1 1

Il Il Il 1 Il
0 20 40 60 80 100 120 140 160 180 200
Iteration

Fig.4. The Hi story of changes of coefficients for constant, forced

saturation | evel.

» These results (Fig. 4) clearly show that incorremturation level evaluation is not only
reason of problems in identification.

6. Summary

Presented results shows that identification of LB model is not a simple task.
Although, advanced and tested solutions have bpphed, there is still hard to achieve a
satisfactory effectiveness of algorithm especiéthyhard cases with high original values of
model coefficients.

Up to now it is hard to point out all difficultieshich have to be overtaken but clearly
some light has been casted on the problem. Althosglturation level seems to have
significant impact, on identification, the problamay be the separated identification itself
because, a change in one coefficient estimate leattse change in shape of solution space
for other one and vice versa.
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