SELECTED ENGINEERING PROBLEMS NUMBER 4

INSTITUTE OF ENGINEERING PROCESSES AUTOMATION AND INTEGRATED MANUFACTURING SYSTEMS

Andrzej BUCHACZ¹, Yury STEPANOV²*, Gennady BARSUKOV²,

Alexander MIKHEYEV²

¹ Institute of Engineering Processes Automation and Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland ² State University – Educational Scientific Production Complex, Orel, Russia *yury057@yandex.ru

DEFINITION OF ABRASIVE WATER JET CUTTING CAPACITY TAKING INTO ACCOUNT ABRASIVE GRAIN PROPERTIES

Abstract: The authors of the paper obtained dependences for the definition of abrasive water jet cutting capacity taking into account abrasive grain properties permitting choosing optimal cutting conditions.

1. Introduction

The micro-photo analysis of surfaces machined after abrasive water jet cutting shows that the destruction mechanism of materials with different physic-mechanical properties is about the same [1]. Microcutting is predominant. Thus, for example, when cutting aluminum which is small inclined to a brittle failure, the specific removal is relatively high. Microcutting is carried out at the single application of force of a flying abrasive particle sufficient in size for the detachment of a particle from material work-in-process and having a higher hardness in comparison with it (Fig. 1).

Fig. 1. Microphoto of scratch on work-in-process surface after abrasive water jet cutting

The capacity of chips taken away by a single abrasive grain defines a abrasive water jet cutting performance. In this connection it is necessary to know a path of a particle penetration into work-in-process pieces determining depth h, width b and length L of the scratch caused by lugs of a grain microrelief. In the paper [2] it was determined that the average value of angles 2β at a vertex decreases with the decrease of a grain number. The value of angles 2β is within the limits 40-150°. And at the same time the percentage of acute angles makes up 12-25%.

2. Modeling of penetration of an abrasive grain into material

Let us examine the problem of penetration of an abrasive grain into material when the angle between a contact surface and symmetry axis of penetrated particle δ is small. At the determination of a path of a single grain motion we shall take into account the rotation of an abrasive particle round a centre of mass.

To solve the problem let us make the following assumptions:

1) value Δ of grain penetration into material is less of its radius;

2) the angular velocity of grain rotation round a symmetry axis is absent, but round a centre of mass is equal to zero at the initial moment of a contact;

3) at the initial moment of a contact with a material surface the velocity vector of a grain concurs with the axis of its symmetry;

4) let us approximate the form of an abrasive grain by two cones having a common base the vertexes of which are equally spaced on different sides.

Now let us determine the overpressure acting on the surface of a contact of an abrasive grain with material by the dependence [3]:

$$p = v^{2} \frac{\rho_{0}}{b(v-2)} \left[\frac{v-2}{v} \left(a^{\frac{\nu}{2}} - 1 \right) + b(v-2)a^{\frac{\nu}{2}} - \left(a^{\frac{\nu}{2}} - 1 \right) \right] \sin^{2} \beta + \left(a^{\frac{\nu}{2}} - 1 \right) \left(p_{0} + \frac{\tau_{0}}{v(1+\mu)} \right),$$
(1)

where a, b - factors $a = \frac{1}{1-b}$; $b = \frac{\rho_0}{\rho(t)} = const$

c₀ - initial density of work material;

c(t) - current density of work material in the area of a contact with an abrasive grain;

 V_0 – axial component of the velocity of a grain penetration into material;

 τ_0 – yield point of work material;

 μ – Poisson's ratio for work material;

$$v - \text{factor}, v = \frac{2\mu}{1+\mu};$$

 p_0 – initial pressure on the surface of a grain contact with material;

 β – vertex angle of an abrasive grain.

Let us determine the projection area of abrasive grain S_y and S_z on plane $y\xi$ and $z\xi$ of moving coordinates $yz\xi$ (Fig. 2).

Let us put down the equation of the intersection of an abrasive grain tapered surface with a barrier surface:

$$\xi^{2} + \left[\left(\frac{d}{2} - \Delta \right) - z \sin \alpha \right]^{2} = t g^{2} \beta \left(\frac{d}{2tg\beta} - z \right)^{2}, \qquad (2)$$

where ξ , z - current coordinates of the abrasive grain at an arbitrary point of time;

d – grain diameter;

 Δ - depth of grain penetration into a surface.

Fig. 2 Diagram of abrasive particle interaction with surface of work material

Suppose, that $\xi = 0$ then:

$$z_{\max} = \frac{\Delta}{tg\beta - \sin\alpha}.$$
(3)

When solving the equation (2) at z=0, we shall define value ξ :

$$\xi = \pm \sqrt{d\Delta - \Delta^2} \,. \tag{4}$$

Now define the area of a grain projection on plane $y\xi$:

$$S_{y} = \frac{4}{3} \frac{\Delta \sqrt{d\Delta - \Delta^{2}}}{tg\beta - \sin\alpha}.$$
(5)

In a similar manner we define the projection area of an abrasive grain on plane $z\xi$:

$$S_{z} = \frac{d^{2}}{4} \left(\frac{\pi}{180} \arcsin \frac{2\sqrt{d\Delta - \Delta^{2}}}{d} - \frac{2\sqrt{d\Delta - \Delta^{2}}}{d} \sqrt{1 - \left(\frac{2\sqrt{d\Delta - \Delta^{2}}}{d}\right)^{2}} \right).$$
(6)

Taking into account the fact than the whole contact surface is affected by pressure p definable by the formula (1) we find the value of an axial and transverse cutting force (tool pressure):

$$F_{y} = S_{y}p = \frac{4}{3} \frac{\sqrt{d\Delta^{3} - \Delta^{4}}}{tg\beta - \sin\alpha}p,$$
(7)

$$F_{z} = S_{z}p = \frac{d^{2}}{4} \left(\frac{\pi}{180} \arcsin \frac{2\sqrt{d\Delta - \Delta^{2}}}{d} - \frac{2\sqrt{d\Delta - \Delta^{2}}}{d} \sqrt{1 - \left(\frac{2\sqrt{d\Delta - \Delta^{2}}}{d}\right)^{2}} \right) p.$$
(8)

Define the approximate value of a resulting moment of forces with regard to a centre of mass of an abrasive grain:

$$M = -\left(\frac{d}{2} - \frac{2}{3}\Delta\right)F_z + \frac{1}{3}\frac{\Delta}{tg\beta}F_y.$$
(9)

To formulate the equation of an abrasive grain motion we compute the projection of an axial component of the velocity for abscissa and 3 of immovable co-ordinates *x*III3:

$$\dot{x} = V \cos \alpha, \tag{10}$$

$$\eta = V \sin \alpha, \tag{11}$$

Where V – rate of an abrasive particle

Let us show the expression (1) in the following form:

$$p = \dot{x}^2 k + w, \tag{12}$$

where:
$$k = \frac{\rho_0}{b(\nu - 2)} \left[\frac{\nu - 2}{\nu} \left(a^{\frac{\nu}{2}} - 1 \right) + b(\nu - 2) a^{\frac{\nu}{2}} - \left(a^{\frac{\nu}{2}} - 1 \right) \right] \sin^2 \beta,$$

$$w = \left(a^{\frac{\nu}{2}} - 1 \right) \left(p_0 + \frac{\tau_0}{\nu(1 + \mu)} \right).$$

We put down the equation of motion and a mass centre rotation of an abrasive grain with regard to immovable co-ordinates $x\psi\eta$:

$$\begin{cases}
m\ddot{x} = -F_z \cos \alpha + F_y \sin \alpha, \\
m\ddot{\eta} = -F_z \sin \alpha - F_y \cos \alpha, \\
I\ddot{\varphi} = M,
\end{cases}$$
(13)

where m – mass of an abrasive grain;

I – equatorial inertia moment;

 $\phi = \alpha_0 - \alpha$ - obliquity change of a symmetry axis of a grain to a barrier;

 α_0 - initial angle between a contact surface and symmetry axis of a grain penetrating. It is seen from Fig. 2, that:

$$\Delta = \eta - H_0, \tag{14}$$

$$\alpha = \alpha_0 - \varphi. \tag{15}$$

Substituting (14), (15) in (13) we obtain:

$$\begin{cases} m\ddot{x} = \left[\dot{x}^{2}k + w\right] \left[-\frac{d^{2}}{4}\gamma\cos(\alpha_{0} - \phi) + \frac{4}{3}\lambda\sin(\alpha_{0} - \phi), \right], \\ m\ddot{\eta} = -\left[\dot{x}^{2}k + w\right] \left[\frac{d^{2}}{4}\gamma\sin(\alpha_{0} - \phi) + \frac{4}{3}\lambda\cos(\alpha_{0} - \phi), \right], \end{cases}$$
(16)
$$I\ddot{\phi} = \left[\dot{x}^{2}k + w\right] \left[-\frac{d^{2}}{4}\gamma\left(\frac{d}{2} - \frac{2}{3}(\eta - H_{0})\right) + \frac{4\Delta}{9tg\beta}\lambda. \right],$$
where λ, γ -factors; $\lambda = \frac{\sqrt{d(\eta - H_{0})^{3} - (\eta - H_{0})^{4}}}{tg\beta - \sin(\alpha_{0} - \phi)};$

$$\gamma = \left(\frac{\pi}{180} \arcsin \frac{2\sqrt{d(\eta - H_0) - (\eta - H_0)^2}}{d} - \frac{2\sqrt{d(\eta - H_0) - (\eta - H_0)^2}}{d}\sqrt{1 - \left(\frac{2\sqrt{d(\eta - H_0) - (\eta - H_0)^2}}{d}\right)^2}\right)$$

The initial conditions for the equations set (16);

$$\dot{x}(0) = V_0 \cos \alpha_0, \qquad x(0) = 0, \dot{\eta}(0) = V_0 \sin \alpha_0, \qquad \dot{\eta}(0) = H_0, \qquad (17) \dot{\phi}(0) = 0. \qquad \phi(0) = \alpha_0.$$

The combined equations (16) are solved through a numerical method. In Fig. 3 there is a result graphically shown.

3. Conclusion

The computations carried out show that at the application of garnet - a harder material as an abrasive, the productivity of the process increases in comparison with carborundum by 100-200 % that is proved by comparative tests.

The predictable productivity on rated dependences of a process is good correlated with practical recommendations of manufacturers of hydrocutting equipment for rectilinear cutting with maximum productivity.

References

- 1. Stepanov Y., Barsukov G.: Parts surface quality formation at cutting with supersonic liquid stream. "Machine Tool" 2003, Vol. 10, pp. 15 17.
- 2. Stepanov Y., Barsukov G., Mikheyev A.: Barrier destruction with supersonic stream of free abrasive particles. Moskow: Spectrum, 2010.
- 3. Stepanov Y., Barsukov G., Alexandrov A.: Computational simulation of spherical indenter deflected mode at supersonic impact interaction with a barrier. "Fundamental and applied problems of engineering and technology" 2010, Vol. 2/3. pp. 3-8.