
S E L E C T E D E N G I N E E R I N G P R O B L E M S
N U M B E R 6

I N S T I T U T E O F E N G I N E E R I N G P R O C E S S E S A U T O M A T I O N
A N D I N T E G R A T E D M A N U F A C T U R I N G S Y S T E M S

Krzysztof FOIT

Institute of Engineering Processes Automation and Integrated Manufacturing Systems
Corresponding author: krzysztof.foit@polsl.pl

TASK-LEVEL PROGRAMMING OF A ROBOTIC SYSTEM USING
HIGH LEVEL LOGIC LANGUAGE

Abstract: The planning of robotics task is the main problem during the creation of the code
se of task designing, the program should be described

on low level of details i.e. only the main actions should be concerned. This is so-called task-
level approach and the program could be shown in the form of pseudo code, which is not
standardised form of programming language. The analysis of the available literature points
out that the formalised pseudocode could be successfully used for future processing in the
field of mobile robotic, while the application in the field of stationary robotics is in early stage
of development. However some task requires detailed analysis before creating the plan of
program, because of complex task conditions. In such cases the operator could use the logic
programming language, like Prolog, to solve the problem.

1. Introduction

-comprehensible form. The job that could
be easily described in the everyday language often requires many lines of a source code. The
things are even worse when the programmer must resolve some additional problems before
coding
according to the specifics of objects that should be placed at the correct position. One of the
possible ways to resolve of such problem is shown in Figure 1. The method consists of four
steps:

 problem analysis and solution,
 description of the solution in the form of block diagram, SFC/GRAFCET or in

everyday language,
 translation of such description to the form of the source code skeleton of the

program,
 the development of the source code procedures, functions, error handling etc.

The first step may include some elements of computer aided program development.
Using one of the available logic programming languages, the operator could

Fig.1. The process of resolving complex programming issue

The other scenario is related to the automatic task planning, where the role of the operator

is limited to entering the data that describes the environment and the computer program does
the rest of the job. The result should be more or less complete program that could be run on

different types of robots use different programming languages,
there is almost no possibility to write the program in one, universal way. It should also be
noted that the differences between the various types of industrial robots concern not only the
software level, but also the hardware requirements, like controller abilities, manipulator
kinematics, etc. In the literature, there are several cases where the general purpose task
planning languages are used in the field of robotics [1-3], like STRIPS, ADL, UWL etc. Of

Clearly these
[structures] would not be programs in a traditional language like C or LISP. For one thing,
the primitive statements of the program would have to involve the a
the usual variable assignment or read/write statements.

filled by a proper method, because of the differences between robots.
The paper discus some problems connected with automated task planning for the industrial

robot. The focus is mainly put on the use of high-level logic programming language to solve
the planning problems and to obtain the code in the form of task-level description. Some
aspects of obtaining the template code for a particular robot will be also discussed in the
further part of the paper.

2. Development of the task-level code

As it was mentioned, the task-level code is based on actions, rather than typical variable
and keywords processing. This involves the use of so-called pseudocode. Using such
approach allows presenting the task in the form similar to the source code written in high-
level programming language. The code written in pseudocode is often shorter and more

human.
There is no clear and strict definition of the pseudocode. It could be described as a form of

textual description of the algorithm that uses the syntax based on the popular high-level
programming languages, but the keywords are taken from everyday language. Gilberg and
For English-like representation of the algorithm logic. It
is part English, part structured code
the one of popular programming language: frequently Pascal/Modula, less often C or
structural form of BASIC languages. There is no special outlines how to use the syntax or
what words are acceptable. In general, the pseudocode is not intended for processing with

compilers or interpreters, although it is possible to introduce some rules in order to create
pseudocode-like, high level scripting language [5].

Compared to the block diagram, the pseudocode is more concise in its form and offers
better commenting of the code. Because of preserving the structural form, the pseudocode
could be translated by the operator to the source code in any high-level programming
language.

 The very important thing is to keep in mind, that pseudocode is the mix of structural code
and natural-like language. The key is the term natural-like, because it should be distinguished
from natural language. Everyday communication between people is set on many shorthands
and simplifications. This introduces the ambiguity and noise, leaving the considerable margin

give me some milk, please
information about what the person wants. There is no data about the amount, if the milk is fat
or skim, about the container or the action. Moreover, if someone wants to drink the milk, we
pour the milk into the glass or mug, but that person may need it for coffee there is no
information about intended use in the sentence. The missing knowledge could be
complemented by requesting the missing data or by the interpretation of the other messages
the person that gives the milk is in certain environment and uses its own knowledge and
experience. There should be noted that the knowledge comes from an external source, while
the experience is based on heuristic.

Fig.2.Data flow during interpretation of information

Figure 2 shows the data flow during interpretation of the information. Considering human

abilities, it can be said that a person first of all will use the knowledge from database (own
mind, books, observations). If the solution has not been found, then he will try to make
interpretation based on his experience and skills to combine the owned knowledge with the
new facts. The consequence is the creation of the new knowledge that could be used in the
future.

During the development of the task-level pseudocode, it must be taken into consideration
that it is interpreted mainly by human. Machine processing is very limited. However Blank et
al. [5] show the example of pseudocode implementation using the unified framework written
in Python. The Pyro (Python Robotics) is composed of a set of Python classes that provides
the programming interface (API). The authors explain that the API covers the low-level

possible to automatically generate the Pyro scripts, it seems to be feasible.
In conclusion, it should be mentioned that for further processing of the pseudocode it is

necessary to implement strict syntax. All of the actions should be determined in the complete
and unambiguous way, albeit it is not mean that the obtained code will be complete and ready
to run.

3. Splitting the task into the smaller parts structural programming
approach

The task-level planning gives the description of the job using lowest level of details.
However, each activity consists of lower-level actions that can be conceived as subroutines. In
this manner, a tree structure -level subroutines, and

Fig. 3. The example of the pseudocode using structural programming style

The structural approach (Figure 3) allows reusing the subroutines (procedures or functions)

with different parameters, as well as to make use of code snippets and templates during
pseudocode translation. On the other hand, this may lead to some problems similar to so

themselves in the bad optimization of the code, replication of errors etc. Therefore, if the
pseudocode translation involve the use of snippets and templates (for example in order to
realize communication with the environment through the industrial network or to handle a
tool mounted on the manipulator of the robot) the resultant code must be carefully checked

4. Planning of robotics tasks using logic programming language

Some of the tasks realized by industrial robots require complicated and long plans that
-9] from the point

of view of robotics, it could be said that it is in general a complicated assembly task. One
of the efficient ways to solve elaborated task planning problem is the use of logic
programming language this method is frequently used in the mobile robotics, eg. [10,11].
Using the similar approach in stationary robotics is less popular but also possible..

One of the most known logic programming languages is the Prolog. It was developed in
-oriented languages it has declarative nature

that means there is no coded algorithm. The source code of the Prolog program consists of
logical formulas describing the problem. The compiler solves it using the entered data.

As the example consider the simple robotic cell (Figure 4) that consists of robot, input
storage, output storage and temporary buffer. The aim is to perform the assembly process of a
car lamp. The input storage contains bodies of the lamp with mirrors, bulbs and glass covers
that are arranged in the random order. The temporary buffer has the capacity of one element.
The robot assemblies the lamp by manipulating the elements in the following way:

 the body is placed in the holder,
the bulb is mounted inside the body,

 the glass is covering the body with the bulb.

Fig. 4. The considered assembly cell

Using the Prolog, the input data must reflect the configuration of the buffer. In order to do

that, the input_buffer predicate has been defined in the form of (1):

input_buffer (part1, part2, part3) (1)

where part1, part2, part3 are the variables used for particular components. For the example
configuration of input buffer in the form input_buffer (body, glass, bulb), the resultant
pseudocode is shown in Figure 5.

Fig.5. The example of the resultant pseudocode

 Some sequences of parts in the input buffer give no solution because there is no possibility

to store more than one element in the temporary buffer.

5. Conclusions

The development of the program at the task level significantly simplifies the process of
programming because of using the high level of generality. This is possible through the use of
pseudocode, which is the mixed form of a programming language syntax and natural language.
Using the standardized form of pseudocode gives the possibility to translate the task-level
description into the more or less complet
hand, there are kind of tasks that cannot be easily programmed and requires additional analysis
before making the plan. In such case the logic programming language like Prolog could be
used to solve the problem. As a result, the pseudocode is obtained that could be used for further
processing. Future work will focus on coherent system that will assist the operator from the

controller.

References
1. Lin F., Levesque H.J.: What robots can do: robot programs and effective achievability,

ArtificalInteligence 101 (1998), pp. 201-226.
2. Fikes, R., and Nilsson, N.: STRIPS: A New Approach to the Application of Theorem

Proving to Problem Solving, Artificial Intelligence, 2(3/4):189-208, 1971.
3. Levesque, H.: What is Planning in the Presence of Sensing?, In The Proceedings of the

Thirteenth National Conference on Artificial Intelligence, AAAI-96, pp. 1139-1146,
Portland, Oregon, 1996.

4. Gilberg R., Forouzan B.: Data Structures: A pseudocode approach with C. Cengage
Learning, 2004.

5. Blank D., Kumar D., Meeden L., Yanco H., Pyro: A python-based versatile programming
environment for teaching robotics, Journal on Educational Resources in Computing
(JERIC) 4.3 (2004): 3

6. Kim M., Bergman L., Lau T., Notkin D.: An Ethnographic Study of Copy and Paste
Programming Practices in OOPL, Proceedings of the 2004 ACM-IEEE International
Symposium on Empirical Software Engineering (ISESE 2004).

7. Momtaz A.S.Z. et al.: A Practical Solution for Robotic Arm of the Towers of Hanoi
Problem, International Journal of Computer and Electrical Engineering, 2011, 3.4: 583.

8. Hoffmann, J.F.F.: The fast-forward planning system. AI magazine, 2001, 22.3: 57.
9. Benjamin D. P., Lyons, D., Lonsdale, D.: Designing a robot cognitive architecture with

concurrency and active perception. In Proceedings of the AAAI Fall Symposium on the
Intersection of Cognitive Science and Robotics. Menlo Park, CA: AAAI Press, 2004

10. r G.: GOLEX bridging the gap between logic
(GOLOG) and a real robot. In: KI-98: Advances in Artificial Intelligence. Springer Berlin
Heidelberg, 1998. p. 165-176.

11. Grosskreutz H.: Towards more realistic logic-based robot controllers in the GOLOG
framework. 2002. PhD Thesis. Bibliothek der RWTH Aachen.

